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1 

CHAPTER 1 
Bayesian Basics Part 1 

1.1 Introduction 

Bayesian methods is a term which may be used to refer to any 
mathematical tools that are useful and relevant in some way to Bayesian 
inference, an approach to statistics based on the work of Thomas Bayes 
(1701–1761). Bayes was an English mathematician and Presbyterian 
minister who is best known for having formulated a basic version of the 
well-known Bayes’ Theorem.  

Figure 1.1 (page 3) shows part of the Wikipedia article for Thomas 
Bayes. Bayes’ ideas were later developed and generalised by many 
others, most notably the French mathematician Pierre-Simon Laplace 
(1749–1827) and the British astronomer Harold Jeffreys (1891–1989). 

Bayesian inference is different to classical inference (or frequentist 
inference) mainly in that it treats model parameters as random variables 
rather than as constants. The Bayesian framework (or paradigm) allows 
for prior information to be formally taken into account. It can also be 
useful for formulating a complicated statistical model that presents a 
challenge to classical methods.  

One drawback of Bayesian inference is that it invariably requires a prior 
distribution to be specified, even in the absence of any prior information.  
However, suitable uninformative prior distributions (also known as 
noninformative, objective or reference priors) have been developed 
which address this issue, and in many cases a nice feature of Bayesian 
inference is that these priors lead to exactly the same point and interval 
estimates as does classical inference. The issue becomes even less 
important when there is at least a moderate amount of data available. As 
sample size increases, the Bayesian approach typically converges to the 
same inferential results, irrespective of the specified prior distribution.  

Another issue with Bayesian inference is that, although it may easily 
lead to suitable formulations of a challenging statistical problem, the 
types of calculation needed for inference can themselves be very 
complicated. Often, these calculations take on the form of multiple 
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integrals (or summations) which are intractable and difficult (or 
impossible) to solve, even with the aid of advanced numerical 
techniques.  

In such situations, the desired solutions can typically be approximated to 
any degree of precision using Monte Carlo (MC) methods. The idea is to 
make clever use of a large sample of values generated from a suitable 
probability distribution.  

How to generate this sample presents another problem, but one which 
can typically be solved easily via Markov chain Monte Carlo (MCMC) 
methods. Both MC and MCMC methods will feature in later chapters of 
the course. 

1.2 Bayes’ rule 

The starting point for Bayesian inference is Bayes’ rule. The simplest 
form of this is 

( ) ( | )( | )
( ) ( | ) ( ) ( | )

P A P B AP A B
P A P B A P A P B A




, 

where A and B are events such that ( ) 0P B > . This is easily proven by 
considering that: 

( )( | )
( )

P ABP A B
P B

    by the definition of conditional probability 

( ) ( ) ( | )P AB P A P B A    by the multiplicative law of probability 
( ) ( ) ( ) ( ) ( | ) ( ) ( | )P B P AB P AB P A P B A P A P B A   

by the law of total probability. 

We see that the posterior probability ( | )P A B  is equal to the prior 
probability ( )P A  multiplied by a factor, where this factor is given by 

( | ) / ( ).P B A P B  

As regards terminology, we call ( )P A  the prior probability of A 
(meaning the probability of A before B is known to have occurred), and 
we call ( | )P A B  the posterior probability of A given B (meaning the 
probability of A after B is known to have occurred). We may also say 
that ( )P A  represents our a priori beliefs regarding A, and ( | )P A B  
represents our a posteriori beliefs regarding A. 
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Figure 1.1 Beginning of the Wikipedia article on Thomas 
Bayes  
Source: en.wikipedia.org/wiki/Thomas_Bayes, 29/10/2014
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More generally, we may consider any event B such that ( ) 0P B >  and 
k > 1 events 1,..., kA A  which form a partition of any superset of B (such 
as the entire sample space S). Then, for any i = 1,...,k, it is true that 

( )( | ) ,
( )

i
i

P A BP A B
P B



where 
1

( ) ( )
n

j
j

P B P A B


  and ( ) ( ) ( | )j j jP A B P A P B A .    

Exercise 1.1 Medical testing 

The incidence of a disease in the population is 1%. A medical test for the 
disease is 90% accurate in the sense that it produces a false reading 10% 
of the time, both: (a) when the test is applied to a person with the 
disease; and (b) when the test is applied to a person without the disease.  

A person is randomly selected from population and given the test. The 
test result is positive (i.e. it indicates that the person has the disease). 

What is the probability that the person actually has the disease? 

Solution to Exercise 1.1 

Let A be the event that the person has the disease, and let B be the event 
that they test positive for the disease. Then: 

( ) 0.01P A =       (the prior probability of the person having the disease) 
( | ) 0.9P B A =   (the true positive rate, also called   

      the sensitivity of the test) 
( | ) 0.9P B A =   (the true negative rate, also called 

      the specificity of the test). 

So: ( ) ( ) ( | ) 0.01 0.9 0.009P AB P A P B A= = × =   
( ) ( ) ( | ) 0.99 0.1 0.099.P AB P A P B A= = × =  

So the unconditional (or prior) probability of the person testing positive 
is  ( ) ( ) ( )P B P AB P AB= + 0.009 0.099 0.108= + = . 

So the required posterior probability of the person having the disease is 
( ) 0.009 1( | )
( ) 0.108 12

P ABP A B
P B

    = 0.08333. 
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Figure 1.2 is a Venn diagram which illustrates how B may be considered 
as the union of AB and AB . The required posterior probability of A 
given B is simply the probability of AB divided by the probability of B. 

Figure 1.2 Venn diagram for Exercise 1.1 

Discussion 

It may seem the posterior probability that the person has the disease 
(1/12) is rather low, considering the high accuracy of the test (namely 

( | ) ( | )P B A P B A=  = 0.9).  

This may be explained by considering 1,000 random persons in the 
population and applying the test to each one. About 10 persons will have 
the disease, and of these, 9 will test positive. Of the 990 who do not have 
the disease, 99 will test positive. So the total number of persons testing 
positive will be 9 + 99 = 108, and the proportion of these 108 who 
actually have the disease will be 9/108 = 1/12. This heuristic derivation 
of the answer shows it to be small on account of the large number of 
false positives (99) amongst the overall number of positives (108). 

On the other hand, it may be noted that the posterior probability of the 
person having the disease is actually very high relative to the prior 
probability of them having the disease ( ( ) 0.01).P A =  The positive test 
result has greatly increased the person’s chance of having the disease 
(increased it by more than 700%, since 0.01 + 7.333 × 0.01 = 0.08333). 
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It is instructive to generalise the answer (1/12) as a function of the 
prevalence (i.e. proportion) of the disease in the population, ( )p P A= , 
and the common accuracy rate of the test, ( | ) ( | )q P B A P B A= = .  

We find that 
( ) ( | )( | )

( ) ( | ) ( ) ( | ) (1 )(1 )
P A P B A pqP A B

P A P B A P A P B A pq p q
 

   
. 

Figure 1.3 shows the posterior probability of the person having the 
disease ( ( | ))P A B  as a function of p with q fixed at 0.9 and 0.95, 
respectively (subplot (a)), and as a function of q with p fixed at 0.01 and 
0.05, respectively (subplot (b)). In each case, the answer (1/12) is 
represented as a dot corresponding to p = 0.01 and q = 0.9.  

Figure 1.3 Posterior probability of disease as functions of p 
and q 
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R Code for Exercise 1.1 

PAgBfun=function(p=0.01,q=0.9){    p*q   /  (p*q+(1-p)*(1-q))    } 
PAgBfun()  # 0.08333333 

pvec=seq(0,1,0.01); Pveca=PAgBfun(p=pvec,q=0.9) 
Pveca2=PAgBfun(p=pvec,q=0.95) 

qvec=seq(0,1,0.01); Pvecb=PAgBfun(p=0.01,q=qvec) 
Pvecb2=PAgBfun(p=0.05,q=qvec) 

X11(w=8,h=7); par(mfrow=c(2,1)); 

plot(pvec,Pveca,type="l",xlab="p=P(A)",ylab="P(A|B)",lwd=2) 
points(0.01,1/12,pch=16,cex=1.5); text(0.05,0.8,"(a)",cex=1.5) 
lines(pvec,Pveca2,lty=2,lwd=2) 
legend(0.7,0.5,c("q  = 0.9","q = 0.95"),lty=c(1,2),lwd=c(2,2)) 

plot(qvec,Pvecb,type="l",xlab="q=P(B|A)=P(B'|A')",ylab="P(A|B)",lwd=2) 
points(0.9,1/12,pch=16,cex=1.5); text(0.05,0.8,"(b)",cex=1.5) 
lines(qvec,Pvecb2,lty=2,lwd=2) 
legend(0.2,0.8,c("p  = 0.01","p = 0.05"),lty=c(1,2),lwd=c(2,2)) 

# Technical note: The graph here was copied from R as ‘bitmap’ and then  
# pasted into a Word document, which was then saved as a PDF. If the graph 
# is copied from R as ‘metafile’, it appears correct in the Word document, 
# but becomes corrupted in the PDF, with axis legends slightly off-centre.  
# So, all graphs in this book created in R were copied into Word as ‘bitmap’. 

Exercise 1.2 Blood types 

In a particular population: 
10% of persons have Type 1 blood,  

and of these, 2% have a particular disease; 
30% of persons have Type 2 blood,   

and of these, 4% have the disease; 
60% of persons have Type 3 blood,   

and of these, 3% have the disease. 

A person is randomly selected from the population and found to have the 
disease.  

What is the probability that this person has Type 3 blood? 
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Solution to Exercise 1.2 
 
Let: A = ‘The person has Type 1 blood’ 
 B = ‘The person has Type 2 blood’ 
 C = ‘The person has Type 3 blood’  
 D = ‘The person has the disease’. 
 
Then: ( ) 0.1P A = ,  ( | ) 0.02P D A =  
 ( ) 0.3P B = ,  ( | ) 0.04P D B =  
 ( ) 0.6P C = ,  ( | ) 0.03P D C = . 
 
So: ( ) ( ) ( ) ( )P D P AD P BD P CD= + +  
  ( ) ( | ) ( ) ( | ) ( ) ( | )P A P D A P B P D B P C P D C= + +  
  0.1 0.02 0.3 0.04 0.6 0.03= × + × + ×  
  0.002 0.012 0.018 0.032= + + = . 
 

Hence: ( ) 0.018 9( | )
( ) 0.032 16

P CDP C D
P D

= = =  = 56.25%. 

 
Figure 1.4 is a Venn diagram showing how D may be considered as the 
union of AD, BD and CD. The required posterior probability of C given 
D is simply the probability of CD divided by the probability of D. 
 
 
Figure 1.4 Venn diagram for Exercise 1.2  
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1.3 Bayes factors 

One way to perform hypothesis testing in the Bayesian framework is via 
the theory of Bayes factors. Suppose that on the basis of an observed 
event D (standing for data) we wish to test a null hypothesis 

0 0:H E   
versus an alternative hypothesis 

1 1:H E  , 
where 0E  and 1E  are two events (which are not necessarily mutually 
exclusive or even exhaustive of the event space). 

Then we calculate: 
   0 0( )P Eπ =  = the prior probability of the null hypothesis 
   1 1( )P Eπ =  = the prior probability of the alternative hypothesis 
   PRO = 0 1/π π  = the prior odds in favour of the null hypothesis 

0 0( | )p P E D=  = the posterior probability of the null hypothesis 

1 1( | )p P E D=  = the posterior probability of the alternative hypothesis 
   POO = 0 1/p p  = the posterior odds in favour of the null hypothesis. 

The Bayes factor is then defined as / .BF POO PRO=  This may be 
interpreted as the factor by which the data have multiplied the odds in 
favour of the null hypothesis relative to the alternative hypothesis. If 
BF > 1 then the data has increased the relative likelihood of the null, and 
if BF < 1 then the data has decreased that relative likelihood. The 
magnitude of BF tells us how much effect the data has had on the 
relative likelihood. 

Note 1: Another way to express the Bayes factor is as 
0 1 0 1 0 0

0 1 0 1 1 1

/ ( | ) / ( | ) ( ) ( | ) / ( )
/ ( ) / ( ) ( ) ( | ) / ( )

p p P E D P E D P D P E D P EBF
P E P E P D P E D P Eπ π

= = =

0

1

( | )
( | )

P D E
P D E

= .  

Thus, the Bayes factor may also be interpreted as the ratio of the 
likelihood of the data given the null hypothesis to the likelihood of the 
data given the alternative hypothesis.  
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Note 2: The idea of a Bayes factor extends to situations where the null 
and alternative hypotheses are statistical models rather than events. This 
idea may be taken up later.  

Exercise 1.3 Bayes factor in disease testing 

The incidence of a disease in the population is 1%. A medical test for the 
disease is 90% accurate in the sense that it produces a false reading 10% 
of the time, both: (a) when the test is applied to a person with the 
disease; and (b) when the test is applied to a person without the disease.  

A person is randomly selected from population and given the test. The 
test result is positive (i.e. it indicates that the person has the disease). 

Calculate the Bayes factor for testing that the person has the disease 
versus that they do not have the disease. 

Solution to Exercise 1.3 

Recall in Exercise 1.1, where A = ‘Person has disease’ and B = ‘Person 
tests positive’, the relevant probabilities are ( ) 0.01P A = , ( | ) 0.9P B A =  
and ( | ) 0.9P B A = , from which can be deduced that ( | ) 1 /12P A B = . 

We now wish to test 0 :H A   vs 1 :H A . So we calculate: 
   0 ( )P Aπ =  = 0.01, 1 ( )P Aπ =  = 0.99,  PRO = 0 1/π π  = 1/99, 

0 ( | )p P A B= = 1/12, 1 ( | )p P A B= = 11/12, POO = 0 1/p p = 1/11. 

Hence the required Bayes factor is BF = POO/PRO = (1/11)/(1/99) = 9. 

This means the positive test result has multiplied the odds of the person 
having the disease relative to not having it by a factor of 9 or 900%. 
Another way to say this is that those odds have increased by 800%.  

Note: We could also work out the Bayes factor here as  
( | ) 0.9 9
( | ) 0.1

P B ABF
P B A

= = = , 

namely as the ratio of the probability that the person tests positive given 
they have the disease to the probability that they test positive given they 
do not have the disease. 
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1.4 Bayesian models 

Bayes’ formula extends naturally to statistical models. A Bayesian 
model is a parametric model in the classical (or frequentist) sense, but 
with the addition of a prior probability distribution for the model 
parameter, which is treated as a random variable rather than an unknown 
constant. The basic components of a Bayesian model may be listed as:   

• the data, denoted by y
• the parameter, denoted by 
• the model distribution, given by a specification of

( | )f y   or ( | )F y   or the distribution of ( | )y θ  
• the prior distribution, given by a specification of

( )f   or ( )F   or the distribution of  θ . 

Here, F is a generic symbol which denotes cumulative distribution 
function (cdf), and f is a generic symbol which denotes probability 
density function (pdf) (when applied to a continuous random variable) or 
probability mass function (pmf) (when applied to a discrete random 
variable). For simplicity, we will avoid the term pmf and use the term 
pdf or density for all types of random variable, including the mixed type.  

Note 1: A mixed distribution is defined by a cdf which exhibits at least 
one discontinuity (or jump) and is strictly increasing over at least one 
interval of values.  

Note 2: The prior may be specified  by writing a statement of the form 
‘ ’~ ... , where the symbol ‘~’  means ‘is distributed as’, and where 
‘...’denotes the relevant distribution. Likewise, the model for the data 
may be specified by writing a statement of the form ( | ) .‘ ’~ ..y θ .  

Note 3: At this stage we will not usually distinguish between y as a 
random variable and y as a value of that random variable; but sometimes 
we may use Y for the former. Each of y and   may be a scalar, vector, 
matrix or array. Also, each component of y and   may have a discrete 
distribution, a continuous distribution, or a mixed distribution.  

In the first few examples below, we will focus on the simplest case 
where both y and   are scalar and discrete.  
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1.5 The posterior distribution 
 
Bayesian inference requires determination of the posterior probability 
distribution of  . This task is equivalent to finding the posterior pdf of 
 , which may be done using the equation 

 ( ) ( | )( | )
( )

f f yf y
f y

 
  . 

 
Here, ( )f y  is the unconditional (or prior) pdf of y, as given by  

    
( ) ( | ) if is continuous

( ) ( | ) ( )
( ) ( | ) if is discrete.

f f y d
f y f y dF

f f y


   
 

  

 


 

 

    

Note: Here, ( | ) ( )f y dF   is a Lebesgue-Stieltjes integral, which may 

need evaluating by breaking the integral into two parts in the case where 
θ  has a mixed distribution. In the continuous case, think of ( )dF   as 

( ) ( )dF d f d
d


  


 .  

    
Exercise 1.4 Loaded dice 
 
Consider six loaded dice with the following properties. Die A has 
probability 0.1 of coming up 6, each of Dice B and C has probability 0.2 
of coming up 6, and each of Dice D, E and F has probability 0.3 of 
coming up 6.  
 
A die is chosen randomly from the six dice and rolled twice. On both 
occasions, 6 comes up.  
 
What is the posterior probability distribution of θ , the probability of 6 
coming up on the chosen die. 
 
Solution to Exercise 1.4 
 
Let y be the number of times that 6 comes up on the two rolls of the 
chosen die, and let θ  be the probability of 6 coming up on a single roll 
of that die. Then the Bayesian model is: 
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( | ) ~ (2, )y Binθ θ  
1/ 6, 0.1

( ) 2 / 6, 0.2
3 / 6, 0.3.

f
θ

θ θ
θ

=
= =
 =

 

In this case y = 2 and so 
2 2 2 2 22 2

( | ) (1 ) (1 )
2

y yf y
y

θ θ θ θ θ θ− −   
= − = − =   
   

. 

So  2 2 21 2 3( ) ( ) ( | ) (0.1) (0.2) (0.3)
6 6 6

f y f f y
θ

θ θ= = + +∑  = 0.06. 

So 

2

2

2

(1/ 6)0.1 / 0.06 0.02778, 0.1
( ) ( | )( | ) (2 / 6)0.2 / 0.06 0.22222, 0.2

( )
(3 / 6)0.3 / 0.06 0.75, 0.3.

f f yf y
f y

θ
θ θθ θ

θ

 = =
= = = =
 = =

 

Note: This result means that if the chosen die were to be tossed again a 
large number of times (say 10,000) then there is a 75% chance that 6 
would come up about 30% of the time, a 22.2% chance that 6 would 
come up about 20% of the time, and a 2.8% chance that 6 would come 
up about 10% of the time.  

1.6 The proportionality formula 

Observe that ( )f y  is a constant with respect to θ  in the Bayesian 
equation    

( | ) ( ) ( | ) / ( )f y f f y f y   ,  
which means that we may also write the equation as 

( ) ( | )( | ) f f yf y
k

 
  ,       

or as 
( | ) ( ) ( | )f y cf f y   , 

where  ( )k f y  and 1 /c k .   

We may also write  
( | ) ( ) ( | )f y f f y   , 

where ∝  is the proportionality sign. 
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Equivalently, we may write 

( | ) ( ) ( | )f y f f y


    
to emphasise that the proportionality is specifically with respect to θ . 

Another way to express the last equation is  
( | ) ( ) ( | )f y f L y    , 

where ( | )L y  is the likelihood function (defined as the model 
density ( | )f y   multiplied by any constant with respect to ,  and 
viewed as a function of   rather than of y). 

The last equation may also be stated in words as: 

      The posterior is proportional to the prior times the likelihood. 

These observations indicate a shortcut method for determining the 
required posterior distribution which obviates the need for calculating 

( )f y  (which may be difficult).  

This method is to multiply the prior density (or the kernel of that 
density) by the likelihood function and try to identify the resulting 
function of   as the density of a well-known or common distribution.  

Once the posterior distribution has been identified, ( )f y  may then be 
obtained easily as the associated normalising constant. 

Exercise 1.5 Loaded dice with solution via the proportionality 
formula 

As in Exercise 1.4, suppose that Die A has probability 0.1 of coming up 
6, each of Dice B and C has probability 0.2 of coming up 6, and each of 
Dice D, E and F has probability 0.3 of coming up 6.  

A die is chosen randomly from the six dice and rolled twice. On both 
occasions, 6 comes up.  

Using the proportionality formula, find the posterior probability 
distribution of θ , the probability of 6 coming up on the chosen die.  
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Solution to Exercise 1.5 
 
With y denoting the number of times 6 comes up, the Bayesian model 
may be written: 

 22
( | ) (1 ) , 0,1,2y yf y y

y
θ θ θ − 

= − = 
 

 

 ( ) 10 / 6, 0.1,0.2,0.3f θ θ θ= = .  
    
Note: 10 / 6θ  = 1/6, 2/6 and 3/6 for θ  = 0.1, 0.2 and 0.3, respectively.  
    
Hence  ( | ) ( ) ( | )f y f f yθ θ θ∝  

  2210 (1 )
6

y y

y
θ θ θ − 

= × − 
 

 

  2θ θ∝ ×       since y = 2. 
 

Thus  

3

3 3

3

0.1 1/1000, 0.1 1, 0.1
( | ) 0.2 8 /1000, 0.2 8, 0.2

0.3 27 /1000, 0.3 27, 0.3.
f y

θ θ
θ θ θ θ

θ θ

 = = =
  ∝ = = = ∝ =  
  = = = 

 

 

Now, 1 8 27 36+ + = , and so  

3

3

3

1 / 36 0.02778, 0.1
( | ) 2 / 36 0.22222, 0.2

3 / 36 0.75, 0.3,
f y

θ
θ θ

θ

 = =
= = =
 = =

       

which is the same result as obtained earlier in Exercise 1.4. 
  
Exercise 1.6 Buses 
 
You are visiting a town with buses whose licence plates show their 
numbers consecutively from 1 up to however many there are. In your 
mind the number of buses could be anything from one to five, with all 
possibilities equally likely.  
 
Whilst touring the town you first happen to see Bus 3.  
 
Assuming that at any point in time you are equally likely to see any of 
the buses in the town, how likely is it that the town has at least four 
buses? 
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Solution to Exercise 1.6 

Let  θ  be the number of buses in the town and let y be the number of the 
bus that you happen to first see. Then an appropriate Bayesian model is: 

( | ) 1/ , 1,...,f y yθ θ θ= =  
( ) 1/ 5, 1,...,5f θ θ= =     (prior). 

Note: We could also write this model as: 
( | ) ~ (1,..., )y DUθ θ  

~ (1,...,5)DUθ ,        
where DU denotes the discrete uniform distribution. (See Appendix B.9 
for details regarding this distribution. Appendix B also provides details 
regarding some other important distributions that feature in this book.) 

So the posterior density of θ  is       
( | ) ( ) ( | )f y f f yθ θ θ∝  

  1 1/θ∝ × ,  ,...,5yθ = . 

Noting that y = 3, we have that 
1/ 3, 3

( | ) 1/ 4, 4
1/ 5, 5.

f y
θ

θ θ
θ

=
∝ =
 =

 

Now, 1/ 3 1/ 4 1/ 5 (20 15 12) / 60 47 / 60+ + = + + = , and so 
1/ 3 20 , 3

47 / 60 47
1/ 4 15( | ) , 4

47 / 60 47
1/ 5 12 , 5.

47 / 60 47

f y

θ

θ θ

θ

 = =

= = =

 = =

 

So the posterior probability that the town has at least four buses is 

: 4
( 4 | ) ( | ) ( 4 | ) ( 5 | )P y f y f y f y

θ θ

θ θ θ θ
≥

≥ = = = + =∑  

1 ( 3 | )f yθ= − =
20 271
47 47

= − =  = 0.5745.  
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Discussion 
 
This exercise is a variant of the famous ‘tramcar problem’ considered by 
Harold Jeffreys in his book Theory of Probability and previously 
suggested to him by M.H.A. Newman (see Jeffreys, 1961, page 238). 
Suppose that before entering the town you had absolutely no idea about 
the number of buses θ . Then, according to Jeffreys’ logic, a prior which 
may be considered as suitably uninformative (or noninformative) in this 
situation is given by ( ) 1/f θ θ∝ , 1, 2,3,...θ = . 
 
Now, this prior density is problematic because it is improper (since 

11/θ θ∞
=∑ = ∞ ). However, it leads to a proper posterior density given by 

 2

1( | )f y
c

θ
θ

= , 3, 4,5,...θ = ,    

where 
2

2 2 2 2 2

1 1 1 1 1...
3 4 5 6 1 2

c π  = + + + = − + 
 

 = 0.394934. 

 
So, under this alternative prior, the probability of there being at least 
four buses in the town (given that you have seen Bus 3) works out as 

  1( 4 | ) 1 ( 3 | ) 1
9

P y P y
c

θ θ≥ = − = = −  = 0.7187. 

 
The logic which Jeffreys used to come up with the prior ( ) 1/f θ θ∝  in 
relation to the tramcar problem will be discussed further in Chapter 2. 
 
R Code for Exercise 1.6 
 
options(digits=6); c=(1/6)*(pi^2)-5/4; c # 0.394934 
1- (1/3^2)/c # 0.718659 
 
Exercise 1.7 Balls in a box  
 
In each of nine indistinguishable boxes there are nine balls, the ith box 
having i red balls and 9 i−  white balls (i = 1,…,9).  
 
One box is selected randomly from the nine, and then three balls are 
chosen randomly from the selected box (without replacement and 
without looking at the remaining balls in the box).  
 
Exactly two of the three chosen balls are red. Find the probability that 
the selected box has at least four red balls remaining in it. 
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Solution to Exercise 1.7 

Let:  N = the number of balls in each box (9) 
 n = the number of balls chosen from the selected box (3) 
θ  = the number of red balls initially in the selected box  

(1,2,…,8 or 9) 
 y = the number of red balls amongst the n chosen balls (2). 

Then an appropriate Bayesian model is: 
( | ) ~ ( , , )y Hyp N nθ θ      (Hypergeometric with parameters 

      N, θ  and n, and having mean nθ /N) 
~ (1,..., )DU Nθ    (discrete uniform over the integers 1,2,…,N). 

For this model, the posterior density of θ  is 

( | ) ( ) ( | )f y f f yθ θ θ∝
1 N N

y n y nN
θ θ−    

= ×     −    

   !( )!
( )!( ( ))!

N
y N n y
θ θ

θ θ
−

∝
− − − −

,   ,..., ( )y N n yθ = − − . 

In our case, 
!(9 )!( | )

( 2)!(9 (3 2))!
f y θ θθ

θ θ
−

∝
− − − −

, 2,...,9 (3 2)θ = − − ,  

or more simply,  
( | ) ( 1)(9 )f yθ θ θ θ∝ − − ,     2,...,8θ = .  

Thus  

14, 2
36, 3
60, 4

( | ) ( )80, 5
90, 6
84, 7
56, 8

f y k

θ
θ
θ

θ θθ
θ
θ
θ

= 
 = 

= 
 ∝ ≡= 
 = 

= 
 = 

, 

where 
8

1

( )c k
θ

θ
=

≡ ∑  = 14 + 36 + … + 56 = 420. 
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So  

14 / 420 0.03333, 2
36 / 420 0.08571, 3
60 / 420 0.14286, 4

( )( | ) 80 / 420 0.19048, 5
90 / 420 0.21429, 6
84 / 420 0.20000, 7
56 / 420 0.13333, 8.

kf y
c

θ
θ
θ

θθ θ
θ
θ
θ

= =
 = =
 = =
= = = =
 = =

= =
 = =

The probability that the selected box has at least four red balls remaining 
is the posterior probability that θ  (the number of red balls initially in the 
box) is at least 6 (since two red balls have already been taken out of the 
box). So the required probability is     

90 84 56 23( 6 | )
420 42

P yθ + +
≥ = =  = 0.5476. 

R Code for Exercise 1.7 

tv=2:8; kv=tv*(tv-1)*(9-tv); c=sum(kv); c # 420 
options(digits=4);  cbind(tv,kv,kv/c,cumsum(kv/c)) 
# [1,]  2   14   0.03333   0.03333 
# [2,]  3   36   0.08571   0.11905 
# [3,]  4   60   0.14286   0.26190 
# [4,]  5   80   0.19048   0.45238 
# [5,]  6   90   0.21429   0.66667 
# [6,]  7   84   0.20000   0.86667 
# [7,]  8   56   0.13333   1.00000 

23/42 # 0.5476 
1-0.45238 # 0.5476  (alternative calculation of the required probability) 
sum((kv/c)[tv>=6]) #  0.5476    

# (yet another calculation of the required probability) 

1.7 Continuous parameters 

The examples above have all featured a target parameter which is 
discrete. The following example illustrates Bayesian inference involving 
a continuous parameter. This case presents no new problems, except that 
the prior and posterior densities of the parameter may no longer be 
interpreted directly as probabilities. 
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Exercise 1.8 The binomial-beta model (or beta-binomial model) 

Consider the following Bayesian model: 
( | ) ~ ( , )y Binomial n   

~ ( , )Beta       (prior).

Find the posterior distribution of  . 

Solution to Exercise 1.8 

The posterior density is 
( | ) ( ) ( | )f y f f y  

1 1(1 ) (1 )
( , )

y n yn
yB

  
 

 

 


        
1 1(1 ) (1 )y n y            (ignoring constants which  

   do not depend on  ) 
( ) 1 ( ) 1(1 ) , 0 1y n y           .     

This is the kernel of the beta density with parameters y  and 
n y  . It follows that the posterior distribution of   is given by 

( | ) ~ ( , )y Beta y n y     , 
and the posterior density of   is (exactly) 

( ) 1 ( ) 1(1 )( | ) , 0 1
( , )

y n y

f y
B y n y

  
 

 

    
  

  
. 

For example, suppose that   =   = 1, that is, ~ (1,1)Beta .  

Then the prior density is 
1 1 1 1(1 )( ) 1, 0 1

(1,1)
f

B
θ θθ θ

− −−
= = < < .  

Thus the prior may also be expressed by writing ~ (0,1)U .  

Also, suppose that 2.n =  Then there are three possible values of y, 
namely 0, 1 and 2, and these lead to the following three posteriors, 
respectively: 

( | ) ~ (1 0,1 2 0) (1,3)y Beta Beta      
( | ) ~ (1 1,1 2 1) (2,2)y Beta Beta      
( | ) ~ (1 2,1 2 2) (3,1)y Beta Beta     . 

These three posteriors and the prior are illustrated in Figure 1.5. 
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Note: The prior here may be considered uninformative because it is 
‘flat’ over the entire range of possible values for   , namely 0 to 1. This 
prior was originally used by Thomas Bayes and is often called the Bayes 
prior. However, other uninformative priors have been proposed for the 
binomial parameter  . These will be discussed later, in Chapter 2.  
    
 
Figure 1.5 The prior and three posteriors in Exercise 1.8 

 
 
 
R Code for Exercise 1.8  
 
X11(w=8,h=5); par(mfrow=c(1,1)); 
 
plot(c(0,1),c(0,3),type="n",xlab="theta",ylab="density") 
 
lines(c(0,1),c(1,1),lty=1,lwd=3);  tv=seq(0,1,0.01) 
lines(tv,3*(1-tv)^2,lty=2,lwd=3) 
lines(tv,3*2*tv*(1-tv),lty=3,lwd=3) 
lines(tv,3*tv^2,lty=4,lwd=3) 
 
legend(0.3,3,c("prior","posterior if y=0","posterior if y=1","posterior if y=2"), 
     lty=c(1,2,3,4),lwd=rep(2,4)) 
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1.8 Finite and infinite population inference 

In the last example (Exercise 1.8), with the model:  
( | ) ~ ( , )y Binomial n   

~ ( , )Beta   ,
the quantity of interest θ  is the probability of success on a single 
Bernoulli trial.  

This quantity may be thought of as the average of a hypothetically 
infinite number of Bernoulli trials. For that reason we may refer to 
derivation of the posterior distribution,  

( | ) ~ ( , )y Beta y n y     , 
 as infinite population inference. 

In contrast, for the ‘buses’ example further above (Exercise 1.6), which 
involves the model: 

( | ) 1/ , 1,...,f y yθ θ θ= =  
( ) 1/ 5, 1,...,5f θ θ= = ,    

the quantity of interest θ  represents the number of buses in a population 
of buses, which of course is finite.  

Therefore derivation of the posterior,   
20 / 47, 3

( | ) 15 / 47, 4
12 / 47, 5,

f y
θ

θ θ
θ

=
= =
 =

   

 may be termed finite population inference. 

Another example of finite population inference is the ‘balls in a box’ 
example (Exercise 1.7), where the model is: 

( | ) ~ ( , , )y Hyp N nθ θ       
~ (1,..., )DU Nθ ,        

and where the quantity of interest θ  is the number of red balls initially 
in the selected box (1,2,…,8 or 9).   

And another example of infinite population inference is the ‘loaded dice’ 
example (Exercises 1.4 and 1.5), where the model is: 

22
( | ) (1 ) , 0,1,2y yf y y

y
θ θ θ − 

= − = 
 

 

( ) 10 / 6, 0.1,0.2,0.3,f θ θ θ= =  
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and where the quantity of interest θ  is the probability of 6 coming up on 
a single roll of the chosen die (i.e. the average number of 6s that come 
up on a hypothetically infinite number of rolls of that particular die). 

Generally, finite population inference may also be thought of in terms of 
prediction (e.g. in the ‘buses’ example, we are predicting the total 
number of buses in the town). For that reason, finite population 
inference may also be referred to as predictive inference. Yet another 
term for finite population inference is descriptive inference. In contrast, 
infinite population inference may also be called analytic inference. More 
will be said on finite population/predictive/descriptive inference in later 
chapters of the course. 

1.9 Continuous data 

So far, all the Bayesian models considered have featured data which is 
modelled using a discrete distribution. (Some of these models have a 
discrete parameter and some have a continuous parameter.) The 
following is an example with data that follows a continuous probability 
distribution. (This example also has a continuous parameter.) 

Exercise 1.9 The exponential-exponential model 

Suppose θ  has the standard exponential distribution, and the conditional 
distribution of y given θ  is exponential with mean 1/ θ . Find the 
posterior density of θ  given y . 

Solution to Exercise 1.9 

The Bayesian model here is: ( | ) , 0yf y e y     
( ) , 0f e    . 

So 2 1 ( 1)( | ) ( ) ( | ) y yf y f f y e e e              , y > 0. 

This is the kernel of a gamma distribution with parameters 2 and y + 1, 
as per the definitions in Appendix B.2. Thus we may write 

( | ) ~ (2, 1)y Gamma y  , 
from which it follows that the posterior density of θ  is 

2 2 1 ( 1)( 1)( | ) , 0
(2)

yy ef y


 
  

 


. 
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Exercise 1.10 The uniform-uniform model 

Consider the Bayesian model given by: 
( | ) ~ (0, )y Uθ θ   

~ (0,1)Uθ .  

Find the posterior density of θ  given y. 

Solution to Exercise 1.10 

Noting that 0 < y < θ  < 1, we see that the posterior density is 

1
( ) ( | ) 1 (1 / )( | )

( )
1 (1 / )

y

f f yf y
f y

d

θ θ θθ
θ θ

×
= =

×∫

  1/ 1 , 1
log1 log log

y
y y

θ θ
θ
−

= = < <
−

. 

Note: This is a ‘non-standard’ density and strictly decreasing. To give a 
physical example, a stick of length 1 metre is cut at a point randomly 
located along its length. The part to the right of the cut is discarded and 
then another cut is made randomly along the stick which remains. Then 
the part to the right of that second cut is likewise discarded. The length 
of the stick remaining after the first cut is a random variable with density 
as given above, with y being the length of the finally remaining stick.  

1.10 Conjugacy 

When the prior and posterior distributions are members of the same class 
of distributions, we say that they form a conjugate pair, or that the prior 
is conjugate. For example, consider the binomial-beta model: 

( | ) ~ ( , )y Binomial n   
~ ( , )Beta   (prior) 

⇒ ( | ) ~ ( , )y Beta y n y     (posterior). 
Since both prior and posterior are beta, the prior is conjugate. 

Likewise, consider the exponential-exponential model: 
( | ) , 0yf y e y       
( ) , 0f e         (i.e. ~ (1,1))Gammaθ    (prior) 

⇒ ( | ) ~ (2, 1)y Gamma y  (posterior). 
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Since both prior and posterior are gamma, the prior is conjugate. 
 
On the other hand, consider the model in the buses example: 
 ( | ) ~ (1,..., )y DUθ θ  
 ~ (1,...,5)DUθ     (prior) 

     ⇒  
20 / 47, 3

( | 3) 15 / 47, 4
12 / 47, 5

f y
θ

θ θ
θ

=
= = =
 =

   (posterior). 

The prior is discrete uniform but the posterior is not. So in this case the 
prior is not conjugate. 
 
Specifying a Bayesian model using a conjugate prior is generally 
desirable because it can simplify the calculations required.  
 
1.11 Bayesian point estimation 
 
Once the posterior distribution or density ( | )f y  has been obtained, 
Bayesian point estimates of the model parameter   can be calculated. 
The three most commonly used point estimates are as follows. 
 
   • The posterior mean of   is      

 
( | ) if is continuous

( | ) ( | )
( | ) if is discrete.

f y d
E y dF y

f y


   
  

  

 


 

    

 
   • The posterior mode of   is   
 ( | )Mode y   =  any value m∈ℜ  which satisfies   
  ( | ) max ( | )f m x f x

θ
θ θ= =  

                                or lim ( | ) sup ( | )
m

f x f x
θ

θ θ
→

= ,  

                             or the set of all such values. 
 
   • The posterior median of   is  
 ( | )Median y  =  any value m of   such that 
                                       ( | ) 1/ 2P m y         
                                      and ( | ) 1/ 2P m y  , 
                                   or the set of all such values. 
    

Note 1: In some cases, the posterior mean does not exist or it is equal to 
infinity or minus infinity.  
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Note 2: Typically, the posterior mode and posterior median are unique. 
The above definitions are given for completeness.  

Note 3: The integral ( | )dF y   is a Lebesgue-Stieltje’s integral. This

may need to be evaluated as the sum of two separate parts in the case 
where θ  has a mixed distribution. In the continuous case, it is useful to 

think of ( | )dF y  as ( | ) ( | )dF y d f y d
d


  


 .  

Note 4: The above three Bayesian point estimates may be interpreted in 
an intuitive manner. For example, ’s  posterior mode is the value of   
which is ‘made most likely by the data’. They may also be understood in 
the context of Bayesian decision theory (discussed later).  

1.12 Bayesian interval estimation 

There are many ways to construct a Bayesian interval estimate, but the 
two most common ways are defined as follows. The 1   (or 
100(1 )%α− ) highest posterior density region (HPDR) for   is the 
smallest set S such that: 

( | ) 1P S y   
     and 1 2( | ) ( | )f y f y    if 1 S   and 2 S  .

Figure 1.6 illustrates the idea of the HPDR. In the very common 
situation where   is scalar, continuous and has a posterior density which 
is unimodal with no local modes (i.e. has the form of a single ‘mound’), 
the 1–  HPDR takes on the form of a single interval defined by two 
points at which the posterior density has the same value. When the 
HPDR is a single interval, it is the shortest possible single interval over 
which the area under the posterior density is 1– . 

The 1–  central posterior density region (CPDR) for a scalar parameter 
 may be defined as the shortest single interval [a,b] such that:

( | ) / 2P a y       
and ( | ) / 2P b y   . 
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Figure 1.6 An 80% HPDR 

Figure 1.7 illustrates the idea of the CPDR. One drawback of the CPDR 
is that it is only defined for a scalar parameter. Another drawback is that 
some values inside the CPDR may be less likely a posteriori than some 
values outside it (which is not the case with the HPDR). For example, in 
Figure 1.7, a value just below the upper bound of the 80% CPDR has a 
smaller posterior density than a value just below the lower bound of that 
CPDR. However, CPDRs are typically easier to calculate than HPDRs.  

In the common case of a continuous parameter with a posterior density 
in the form of a single ‘mound’ which is furthermore symmetric, the 
CPDR and HPDR are identical.  

Note 1: The 1–   CPDR for   may alternatively be defined as the 
shortest single open interval (a,b) such that: 

( | ) / 2P a y         
     and  ( | ) / 2P b y   .  

Other variations are possible (of the form [a,b) and (a,b]); but when the 
parameter of interest   is continuous these definitions are all equivalent. 
Yet another definition of the 1–  CPDR is any of the CPDRs as defined 
above but with all a posteriori impossible values of   excluded.  

Note 2: As regards terminology, whenever the HPDR is a single 
interval, it may also be called the highest posterior density interval 
(HPDI). Likewise, the CPDR, which is always a single interval, may 
also be called the central posterior density interval (CPDI).  
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Figure 1.7 An 80% CPDR 

Exercise 1.11 A bent coin 

We have a bent coin, for which ,  the probability of heads coming up, is 
unknown. Our prior beliefs regarding   may be described by a standard 
uniform distribution. Thus no value of   is deemed more or less likely 
than any other.  

We toss the coin n = 5 times (independently), and heads come up every 
time.  

Find the posterior mean, mode and median of .  Also find the 80% 
HPDR and CPDR for  . 

Solution to Exercise 1.11 

Recall the binomial-beta model:   
( | ) ~ ( , )y Binomial n   

~ ( , )Beta   ,
for which ( | ) ~ ( , )y Beta y n y     . 

We now apply this result with 5n y= =  and 1    (corresponding 
to ~ (0,1)),U  and find that:  

( | ) ~ (1 5,5 5 1) (6,1)y Beta Beta    
6 1 1 1

5(1 )( | ) 6
(6,1)

f y
B

 
 

 
  ,   0 <   < 1 

5 6

0

( | ) 6F y t dt


   ,   0 <   < 1. 
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Therefore: 6 6( | )
6 1 7

E y  


 = 0.8571 

       6 1( | ) 1
(6 1) (1 1)

Mode y


 
  

 

 ( | )Median y  = solution in   of ( | ) 1/ 2F y  ,  i.e. 6 0.5   
   = 1/ 6(0.5)  = 0.8909. 
 
Also, the 80% HPDR is 1/ 6(0.2 ,1)   (0.7647,1) (since ( | )f y  is strictly 
increasing), and the 80% CPDR is 1/ 6 1/ 6(0.1 ,0.9 )   (0.6813,0.9826). The 
three point estimate and two interval estimates just derived are shown in 
Figure 1.8. 
 
Figure 1.8 Inference in Exercise 1.11 

 
 
R Code for Exercise 1.11 
 
options(digits=4); postmean=6/7; postmode=1; postmedian=0.5^(1/6) 
c(postmean,postmode,postmedian) # 0.8571 1.0000 0.8909 
hpdr=c(0.2^(1/6),1); cpdr=c(0.1,0.9)^(1/6) 
c(hpdr,cpdr) # 0.7647 1.0000 0.6813 0.9826 
 
X11(w=8,h=5); par(mfrow=c(1,1)); tv=seq(0,1,0.01); fv=dbeta(tv,6,1) 
plot(tv,fv,type="l",lwd=3,xlab="theta",ylab="posterior density") 
points(c(postmean,postmode,postmedian),c(0,0,0),pch=c(1,2,4)) 
points(hpdr,rep(0.2,2),pch=16); lines(hpdr,rep(0.2,2),lty=3,lwd=2) 
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points(cpdr,rep(0.4,2),pch=16); lines(cpdr,rep(0.4,2),lty=2,lwd=2) 
abline(v=c(postmean,postmode,postmedian),lty=3) 
abline(v=c(0,hpdr,cpdr),lty=3); abline(h=c(0,6),lty=3) 
legend(0.2,5.8,c("posterior mean","posterior mode", 

"posterior median"),pch=c(1,2,4)) 
legend(0.2,2.8,c("80% CPDR","80% HPDR"),lty=c(2,3),lwd=c(2,2)) 

Exercise 1.12 HPDR and CPDR for a discrete parameter 

Consider the posterior distribution from Exercise 1.7 (Balls in a box): 
14 / 420 0.03333, 2
36 / 420 0.08571, 3
60 / 420 0.14286, 4

( | ) 80 / 420 0.19048, 5
90 / 420 0.21429, 6
84 / 420 0.20000, 7
56 / 420 0.13333, 8.

f y

θ
θ
θ

θ θ
θ
θ
θ

= =
 = =
 = =
= = =
 = =

= =
 = =

Find the 90% HPDR and 90% CPDR for θ . Also find the 50% HPDR 
and 50% CPDR for θ . For each region, calculate the associated exact 
coverage probability. 

Solution to Exercise 1.12 

The 90% HPDR is the set {3,4,5,6,7,8};  
this has exact coverage 1 − 14/420 = 0.9667. 

The 90% CPDR is the closed interval [3, 8]; 
this likewise has exact coverage 0.9667. 

The 50% HPDR is {5,6,7};  
this has exact coverage (80 + 90 + 84)/420 = 0.6047. 

The 50% CPDR is [4, 7];  
this has exact coverage (60 + 80 + 90 + 84)/420 = 0.7476. 

Note: The lower bound of the 50% CPDR cannot be equal to 5. 
This is because ( 5 | ) (14 36 60) / 420P yθ < = + +  = 0.2619, which is not 
less than or equal to / 2 0.25α = , as required by the definition of CPDR.  
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Exercise 1.13 Illustration of the definition of HPDR  
 
Suppose that the posterior probabilities of a parameter θ  given data y 
are exactly 10%, 40% and 50% for values 1, 2 and 3, respectively. Find 
S, the 40% HPDR for θ . 
 
Solution to Exercise 1.13 
 
The smallest set S such that ( | ) 0.4P S y    is {2} or {3}. With the 
additional requirement that 1 2( | ) ( | )f y f y   if 1 S   and 2 S  , we 
see that S = {3} (only). That is, the 40% HPDR is the singleton set {3}. 
 
1.13 Inference on functions of the model  
parameter   
 
So far we have examined Bayesian models with a single parameter θ  
and described how to perform posterior inference on that parameter. 
Sometimes there may also be interest in some function of the model 
parameter, denoted by (say)  
 ( )gψ θ= . 
 
Then the posterior density of ψ  can be derived using distribution theory, 
for example by applying the transformation rule, 

 ( | ) ( | ) df y f y
d
θψ θ
ψ

= , 

in cases where ( )gψ θ=  is strictly increasing or strictly decreasing.  
 
Point and interval estimates of ψ  can then be calculated in the usual 
way, using ( | )f yψ . For example, the posterior mean of ψ  equals  
 ( | ) ( | )E y f y dψ ψ ψ ψ= ∫ . 
 
Sometimes it is more practical to calculate  point and interval estimates 
another way, without first deriving ( | )f yψ . 
 
For example, another expression for the posterior mean is  
 ( | ) ( ( ) | ) ( ) ( | )E y E g y g f y dψ θ θ θ θ= = ∫ . 
 

This content downloaded from 
�������������58.97.216.197 on Thu, 05 Sep 2024 07:06:19 UTC������������� 

All use subject to https://about.jstor.org/terms



Bayesian Methods for Statistical Analysis 

32 

Also, the posterior median of ψ , call this M, can typically be obtained 
by simply calculating 

( )M g m= ,    
where m is the posterior median of θ .  

Note: To see why this works, we write 
( | ) ( ( ) | )P M y P g M yψ θ< = <  

( ( ) ( ) | )P g g m yθ= < ( | )P m yθ= < 1/ 2= .  

Exercise 1.14  Estimation of an exponential mean 

Suppose that θ  has the standard exponential distribution, and y given θ  
is exponential with mean 1/θ . Find the posterior density and posterior 
mean of the model mean, ( | ) 1/E yψ θ θ= = ,  given the data y. 

Solution to Exercise 1.14  

Recall that the Bayesian model 
( | ) , 0yf y e y     
( ) , 0f e     

implies the posterior ( | ) ~ (2, 1)y Gamma y  . 

So, by definition, ( | ) ~ (2, 1)y InverseGamma y  , 

with density 
2 (2 1) ( 1)/ 2

3 ( 1)/

( 1) ( 1)( | ) , 0,
(2)

y

y

y e yf y
e






 



   



 
  


 

and mean 1( | ) 1
2 1
yE y y


  


.  

Note: This mean could also be obtained as follows: 
1( | )E y E y


      0

1 ( | )f y d 




 
2 2 1 ( 1)

0

1 ( 1)
(2)

yy e d





   
 


2 1 1 1 ( 1)

1
0

(1)( 1) 1 ( 1)
(2)( 1) (1)

yy y e d
y






     
 

  
1y     (using the fact that the last integral equals 1). 
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Exercise 1.15 Inference on a function of the binomial 
parameter 

Recall the binomial-beta model given by: 
( | ) ~ ( , )y Binomial n    

~ ( , )Beta   ,
for which ( | ) ~ ( , )y Beta y n y     .  

Find the posterior mean, density function and distribution function of 
2ψ θ=   in the case where n = 5, y = 5, and  1   . 

Note: In the context where we toss a bent coin five times and get heads 
every time (and the prior on the probability of heads is standard 
uniform), the quantity ψ  may be interpreted as the probability of the 
next two tosses both coming up heads, or equivalently, as the proportion 
of times heads will come up twice if the coin is repeatedly tossed in 
groups of two tosses a hypothetically infinite number of times.  

Solution to Exercise 1.15 

Here, ( | ) ~ (1 5,1 5 5) ~ (6,1)y Beta Beta   
with pdf 5( | ) 6 , 0 1f yθ θ θ= < < .  

Now 1/2θ ψ=  and so, by the transformation method, the posterior 
density function of ψ  is 

1
5/2 221( | ) ( | ) 6 3 , 0 1

2
df y f y
d
θψ θ ψ ψ ψ ψ
ψ

−
= = − = < < . 

It follows that the posterior mean of ψ  is 

( )
1

2

0

ˆ ( | ) 3 0.75E y dψ ψ ψ ψ ψ= = =∫ ,

and the posterior distribution function of ψ  is 

2 3

0 0

( | ) ( | ) 3 , 0 1F y f t y dt t dt
ψ ψ

ψ ψ ψ ψ= = = = < <∫ ∫ . 
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Note 1:  The posterior mean of 2ψ θ=  can also be obtained by writing  

( )
1

2 2 5

0

ˆ ( | ) 6 0.75E y dψ θ θ θ θ= = =∫
or  2 2ˆ ( | ) ( | ) { ( | )}E y V y E yψ θ θ θ= = +  

          
2

2

6 1 6
(6 1) (6 1 1) 6 1

×  = +  + + + + 
 = 0.75 

or ( | ) ~ (3,1)y Betaψ   ⇒    ˆ ( | )E yψ ψ=  = 3/(3 + 1) = 0.75. 

Note 2: The distribution function of 2ψ θ=  can also be obtained by 
writing     

2 1/2( | ) ( | ) ( | ) ( | )F v y P v y P v y P v yψ ψ θ θ= = ≤ = ≤ = ≤  

       1/2( | )F v yθ= = 1/2

6 3

v
v

θ
θ

=
 = =  

, 0 < v < 1. 

Note 3: In the above, ( | )f t yψ =  denotes the pdf of ψ  given y, but 
evaluated at t.  This pdf could also be written as ( | )f t yψ  or as    

( | )
t

f y
ψ

ψ
=

 
  . Likewise, ( | )F v yψ =  ≡  ( | )F v yψ ≡ ( | )

v
F y

ψ
ψ

=
 
  .

1.14 Credibility estimates 

In actuarial studies, a credibility estimate is one which can be expressed 
as a weighted average of the form 

 (1 )C k A kB= − + , 
where: 

 A  is the subjective estimate (or the collateral data estimate) 
 B  is the objective estimate (or the direct data estimate) 
 k is the credibility factor, a number that is between 0 and 1  

(inclusive) and represents the weight  assigned to the  
objective estimate.  

A high value of k implies ,C B≅  representing a situation where the 
objective estimate is assigned ‘high credibility’. A primary aim of 
credibility theory is to determine an appropriate value or formula for k, 
as is done, for example, in the theory of the Bühlmann model 
(Bühlmann, 1967). Many Bayesian models lead to a point estimate 
which can be expressed as an intuitively appealing credibility estimate. 

This content downloaded from 
�������������58.97.216.197 on Thu, 05 Sep 2024 07:06:19 UTC������������� 

All use subject to https://about.jstor.org/terms



Chapter 1: Bayesian Basics Part 1 

35 

Exercise 1.16 Credibility estimation in the binomial-beta 
model 

Consider the binomial-beta model: ( | ) ~ ( , )y Binomial n   
~ ( , )Beta   .

Express the posterior mean of   as a credibility estimate and discuss. 

Solution to Exercise 1.16 

Earlier we showed that 
( | ) ~ ( , )y Beta y n y     ,  

and hence that the posterior mean of   is  
( )ˆ ( | )

( ) ( )
y yE y

y n y n
 

 
   

 
  

     
. 

Observe that the prior mean of θ is / ( )E     , and the maximum 
likelihood estimate (MLE) of θ  is y/n. This suggests that we write 

ˆ y
n n




   
 

   

   n y
n n n

   
      

                    
 

   n y
n n n

  
     

                 
. 

Thus  ˆ (1 )k A kBθ = − +     

where:    A α
α β

=
+

,    yB
n

= ,    nk
n 


 

. 

We see that the posterior mean θ̂  is a credibility estimate in the form of 
a weighted average of the prior mean / ( )A Eθ α α β= = +  and the MLE 

/B y n= , where the weight assigned to the MLE is the credibility factor 
given by  / ( )k n n     . Observe that as n increases, the credibility 
factor k approaches 1. This makes sense: if there is a lot of data then the 
prior should not have much influence on the estimation.  

Figure 1.9 illustrates this idea by showing relevant densities, likelihoods 
and estimates for the following two cases, respectively: 

This content downloaded from 
�������������58.97.216.197 on Thu, 05 Sep 2024 07:06:19 UTC������������� 

All use subject to https://about.jstor.org/terms



Bayesian Methods for Statistical Analysis 

36 

(a)  n = 5,   y = 4,   α  = 2, β  = 6 
(b)  n = 20, y = 16, α  = 2, β  = 6. 

In both cases, the prior mean is the same (A = 2/(2 + 6) = 0.25), as is the 
MLE (B = 4/5 = 16/20 = 0.8). However, due to n being larger in case (b) 
(i.e. there being more direct data), case (b) leads to a larger credibility 
factor (0.714 compared to 0.385) and hence a posterior mean closer to 
the MLE (0.643 compared to 0.462). 

Note: Each likelihood function in Figure 1.9 has been normalised so that 
the area underneath it is exactly 1. This means that in each case (a) and 
(b), the likelihood function ( )L   as shown is identical to the posterior 
density which would be implied by the standard uniform prior, i.e. under 

(0,1) (1,1)( ) ( )U Betaf f  . Thus, (1 ,1 )( ) ( )Beta y n yL f    .  

Figure 1.9 Illustration for Exercise 1.16 
Legend: solid line = prior, dashed line = likelihood, dotted line = posterior, 
circle = prior mean, triangle = MLE, cross = posterior mean 
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R Code for Exercise 1.16 

X11(w=8,h=7); par(mfrow=c(2,1)) 

alp=2; bet=6; n = 5; y = 4; pvec=seq(0,1,0.01) 
plot(c(0,1),c(0,3),type="n",xlab="theta",ylab="density/likelihood") 
lines(pvec,dbeta(pvec,alp,bet),lty=1,lwd=2) 
lines(pvec,dbeta(pvec,1+y,n-y+1),lty=2,lwd=2) 
lines(pvec,dbeta(pvec,alp+y,n-y+bet),lty=3,lwd=2) 

points(c(alp/(alp+bet), y/n,(alp+y)/(alp+bet+n)),c(0,0,0),pch=c(1,2,3), 
cex=rep(1.5,3),lwd=2);  text(0,2.5,"(a)",cex=1.5) 

c(alp/(alp+bet), y/n,(alp+y)/(alp+bet+n)) # 0.2500000 0.8000000 0.4615385 
n/(alp+bet+n) # 0.3846154 

alp=2; bet=6; n = 20; y = 16; pvec=seq(0,1,0.01) 
plot(c(0,1),c(0,5),type="n",xlab="theta",ylab="density/likelihood") 
lines(pvec,dbeta(pvec,alp,bet),lty=1,lwd=2) 
lines(pvec,dbeta(pvec,1+y,n-y+1),lty=2,lwd=2) 
lines(pvec,dbeta(pvec,alp+y,n-y+bet),lty=3,lwd=2) 

points(c(alp/(alp+bet), y/n,(alp+y)/(alp+bet+n)),c(0,0,0),pch=c(1,2,3), 
cex=rep(1.5,3),lwd=2);  text(0,4.5,"(b)",cex=1.5) 

c(alp/(alp+bet), y/n,(alp+y)/(alp+bet+n)) # 0.2500000 0.8000000 0.6428571 
n/(alp+bet+n) # 0.7142857 

Exercise 1.17 Further credibility estimation in the binomial- 
beta model 

Consider the binomial-beta model: 
( | ) ~ ( , )Y Binomial n   

~ ( , )Beta   .

If possible, express the posterior mode of   as a credibility estimate. 

Solution to Exercise 1.17 

Since ( | ) ~ ( , )y Beta y n y     , the posterior mode of θ  is 
( 1) 1( | )

( 1) ( 1) 2
y yMode y

y n y n
 


   

   
 

        
. 
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Now, the prior mode of θ  is  ( 1) 1( )
( 1) ( 1) 2

Mode  


   
 

 
    

. 

 

So we write  1( | )
2 2

yMode y
n n




   


 
     

  

        1 2 1
2 1 2 2

n y
n n n

   
      

                           
. 

 
We see that the posterior mode is a credibility estimate of the form 
   ˆ( | ) 1 ( )Mode y c Mode c     , 

where: 1( )
2

Mode 


 



 

   is the prior mode 

  ˆ y
n

      is the maximum likelihood estimate  

    (mode of the likelihood function) 

 
2

nc
n  


  

   is the credibility factor  

    (assigned to the direct data estimate, ˆ).  
 
Exercise 1.18 The normal-normal model  
 
Consider the following Bayesian model:      
 2

1( , , | ) ~ ( , )ny y iid N    
 2

0 0~ ( , )N   , 
where 2 , 0  and 2

0  are known or specified constants.  
 
Find the posterior distribution of   given data in the form of the vector  

1( ,..., )ny y y .  
 
Solution to Exercise 1.18  
 
The posterior density of   is  
 ( | ) ( ) ( | )f y f f y      

   
2 2

0

10

1 1exp exp
2 2

n
i

i

y   
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      2 2 2 2
0 02 2

10

1 1 1exp 2 2
2

n

i
i

y ny n    
  

                      
 , (1.1) 

where 1( ... ) /ny y y n    is the sample mean. 
 
We see that the posterior density of   is proportional to the exponent of 
a quadratic in  . That is,  

  2
*2

*

1( | ) exp
2

f y  


       
,    (1.2) 

which then implies that   
2( | ) ~ ( , )y N    ,  

for some constants *  and 2
* . 

 
It remains to find the normal mean and variance parameters, *  and 2

* . 
(These must be functions of the known quantities  n, y ,  , 0  and  0 .) 
 
One way to obtain these parameters which completely define ’s   
posterior distribution is to complete the square in the exponent of (1.2). 
To this end we write 

 1( | ) exp
2

f y q
     

, 

where  

             2 2
02 2

0

1 12 2q ny n   
 

        

   (ignoring constants with respect to  ) 

 2 0
2 2 2 2
0 0

1 2n ny c
 

   

                  
     

   (where c is a constant with respect to  ) 

 2 2a b c       where   2 2
0

1 na
 

     and   0
2 2
0

nyb 
 

   

 2 2 ba c
a

 
     

    
2

2 2 b ba c
a a

 
                         

     

    (where c  is a constant with respect to  ) 

 
21

1/
b c

a a

      

. 

This content downloaded from 
�������������58.97.216.197 on Thu, 05 Sep 2024 07:06:19 UTC������������� 

All use subject to https://about.jstor.org/terms



Bayesian Methods for Statistical Analysis 

40 

Thus,    
21( | ) exp

2(1/ )
bf y

a a
 

              
.  (1.3) 

So, equating (1.2) and (1.3), we obtain: 
2 2

2 0
* 2 2

0
2 2
0

1 1
1 na n

 


 
 

  


 

0
2 2 2 2
0 0 0

* 2 2
0

2 2
0

1

ny
n yb

na n


    


 

 




  


. (1.4) 

Note 1: A little algebra (left as an additional exercise) shows that the 
posterior mean can also be written as  

  * 0(1 )k ky    ,       
and the posterior variance can be written as    

2
2
* k

n
σσ = , 

where 

2

2
0

nk
n σ

σ

=
+

. 

We see that ’s  posterior mean is a credibility estimate in the form of a 
weighted average of the prior mean 0  and the sample mean y  (which 
is also the maximum likelihood estimate), with the weight assigned to y
being the credibility factor, k . More will be said on this further down.  

Note 2: Another way to derive *  and 2
*  is to write (1.2) as 

 2 2
* *2

*

1( | ) exp 2
2

f y   


        
 (1.5) 

and then equate coefficients of powers of   in (1.1) and (1.5). This logic 

leads to 2 2 2
* 0

1 1 n
  

   and 0*
2 2 2
* 0

ny
  

   and ultimately the same 

formulae for *  and 2
*  as given by (1.4). 
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Note 3: Since both prior and posterior are normal, the prior is 
conjugate.  

Note 4: The posterior mean, mode and median of   are the same and 
equal to * . The 1 α−  CPDR and 1 α−  HPDR for   are the same and 
equal to * /2 *( )zαµ σ± .  

Note 5: The posterior distribution of   depends on the data 
vector 1( , , )ny y y   only by way of the sample mean, i.e. 

1( ) /ny y y n   . Therefore, the main result, 2( | ) ~ ( , )y N    , 
also implies that 2( | ) ~ ( , )y N    .  

That is, if we know only the sample mean y , the posterior distribution 
of   is the same as if we know y, i.e. all n sample values. Knowing the 
individual iy  values makes no difference to the inference.  

Note 6: The formula for the credibility factor in Note 1, namely 

2 2

2 2
0 0

1
/1

nk
nn σ σ

σ σ

= =
+ +

, 

makes sense in the following ways: 

(i) If the prior standard deviation 0  is small then 0k  , so that 

0    and  0   . Therefore 2
0 0( | ) ~ ( , )y N  



. 

That is, if the prior information is very ‘precise’ or ‘definite’, the data 
has little influence on the posterior. So the posterior is approximately 
equal to the prior; i.e. ( | ) ( )f y f  , or equivalently, ( | ) ~y 



. In 
this case the posterior mean, mode and median of   are approximately 
equal to 0.  Also, the 1 α−  CPDR and 1 α−  HPDR for   are 
approximately equal to 0 /2 0( )zαµ σ± . 

(ii) If 0  is large then 1k  , so that y  , 2 2 / n   , and so 
2( | ) ~ ( , / )y N y n 



.  
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That is, a large 0  corresponds to a highly disperse prior, reflecting little 
prior information and so little influence of the prior distribution (as 
specified by 0  and 0 ) on the inference. In this case the posterior 
mean, mode and median of   are approximately equal to y . Also, the 
1 α−  CPDR and 1 α−  HPDR for   are approximately equal to 

/2( / )y z nα σ± . Thus, inference is almost the same as implied by the 
classical approach. 

(iii) If the sample size n is large then 1,k   so that y   and 
2 2 / n   . Therefore 2( | ) ~ ( , / )y N y n 



.  

So, in this case, just as when 0  is large, the prior distribution has very 
little influence on the posterior, and the ensuing inference is almost the 
same as that implied by the classical approach.  

Note 7: In the case of a priori ignorance (meaning no prior information 
at all) it is customary to take 0  ,  which implies that  

~ (0, )N  . 

This prior on µ appears to be problematic, because it is improper. 
However, it meaningfully leads to a proper posterior, namely  

2( | ) ~ ( , / )y N y n  ,  
which then leads to the same point and interval estimates implied by the 
classical approach, namely the MLE y  and 1 α−  CI /2( / )y z nα σ± . 

The improper prior ~ (0, )N   may be described as ‘flat’ or ‘uniform 
over the whole real line’ and can also be written as 

 ~ ( , )Uµ −∞ ∞       
      or  ( ) 1,f µ µ∝ ∈ℜ . 

In some cases (more complicated models not considered here), using an 
improper prior may lead to an improper posterior, which then becomes 
problematic. For more information on this topic, see Hobert and Casella 
(1996).  
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Summary: For the normal-normal model, defined by: 
  2

1( , , | ) ~ ( , )ny y iid N    
  2

0 0~ ( , )N   , 
the posterior distribution of the normal mean µ  is given by  
 2( | ) ~ ( , )y N    , 
where:  * 0(1 )k ky     

  
2

2
* k

n


         

  2 2
0/

nk
n σ σ

=
+

   (the normal-normal model credibility factor). 

 
The posterior mean, mode and median of   are all equal to *µ ,  
and the 1 α−  CPDR and HPDR for   are both * /2 *( )zαµ σ± . 
 
In the case of a priori ignorance it is appropriate to set 0σ = ∞ .  
 
This defines an improper prior  
 ( ) 1,f µ µ∝ ∈ℜ  
and the proper posterior  
 2( | ) ~ ( , / )y N y n  .  
   
 
Exercise 1.19 Practice with the normal-normal model  
 
In the context of the normal-normal model, given by: 
          2

1( , , | ) ~ ( , )ny y iid N     
          2

0 0~ ( , )N   , 
suppose that  y = (8.4, 10.1, 9.4) , σ  = 1, 0µ  = 5 and 0σ  = 1/2.  
 
Calculate the posterior mean, mode and median of µ .  
 
Also calculate the 95% CPDR and 95% HPDR for µ .  
 
Create a graph which shows these estimates as well as the prior density, 
prior mean, likelihood, MLE and posterior density.  
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Solution to Exercise 1.19 

Here:     n = 3,  
y  = (8.4 + 10.1 + 9.4)/3 = 9.3 

             2

2

1 3
1 / 3 71

(1/ 2)

k = =
+

 = 0.4285714 

*
3 31 5 9.3
7 7


      

  = 6.8428571  

             
2

2
*

3 1 1
7 3 7

σ = × =  = 0.1428571. 

So the posterior mean/mode/median is  
 *  = 6.84286,  

and the 95% CPDR/HPDR is 
 * 0.025 *( )zµ σ±  = (6.84286 1.96 0.14286)±

= (6.102, 7.584). 

Figure 1.10 shows the various densities and estimates here, as well as the 
normalised likelihood. Note that the likelihood function as shown is also 
the posterior density if the prior is taken to be uniform over the whole 
real line, i.e. ~ ( , )Uµ −∞ ∞ . 

Discussion 

If we change 0σ  from 0.5 to 2 we get k = 0.923 and results as illustrated 
in Figure 1.11. 

If we change 0σ  from 0.5 to 0.25 we get k = 0.158 and results as 
illustrated in Figure 1.12 (page 46). 

If we keep 0σ  as 0.5 but change σ  from 1 to 2 we get k = 0.158 and 
results as illustrated in Figure 1.13 (page 46). 

Note that the posteriors in Figures 1.12 and 1.13 have the same mean but 
different variances. 
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Figure 1.10 Results if 0 0.5σ = , 1σ = , 2 2
0/ ( / ) 0.429k n n σ σ= + =

Figure 1.11 Results if 0 2σ = , 1σ = , 2 2
0/ ( / ) 0.9223k n n σ σ= + =  
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Figure 1.12 Results if 0 0.25σ = , 1σ = , 2 2
0/ ( / ) 0.158k n n σ σ= + =  

Figure 1.13 Results if 0 0.5σ = , 2σ = , 2 2
0/ ( / ) 0.158k n n σ σ= + =  
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R Code for Exercise 1.19 

X11(w=8,h=5); par(mfrow=c(1,1)); mu0=5;  sig0=0.5; sig=1 

y = c(8.4, 10.1, 9.4); n = length(y); k=1/(1+(sig^2/n)/sig0^2); k # 0.4285714 
ybar=mean(y); ybar # 9.3 
mus = (1-k)*mu0 + k*ybar; sigs2=k*sig^2/n 
c(mus,sigs2) # 6.8428571 0.1428571 
muv=seq(0,15,0.01) 
prior = dnorm(muv,mu0,sig0); post=dnorm(muv,mus,sqrt(sigs2)) 
like = dnorm(muv,ybar,sig/sqrt(n)) 
cpdr=mus+c(-1,1)*qnorm(0.975)*sqrt(sigs2) 
cpdr # 6.102060 7.583654 

plot(c(0,11),c(-0.1,1.3),type="n",xlab="",ylab="density/likelihood") 
lines(muv,prior,lty=1,lwd=2); lines(muv,like,lty=2,lwd=2) 
lines(muv,post,lty=3,lwd=2) 
points(c(mu0,ybar,mus),c(0,0,0),pch=c(1,2,4),cex=rep(1.5,3),lwd=2) 
points(cpdr,c(0,0),pch=rep(16,2),cex=rep(1.5,2)) 
legend(0,1.3, 

 c("Prior density","Likelihood function (normalised)","Posterior density"), 
lty=c(1,2,3),lwd=c(2,2,2)) 

legend(0,0.7,c("Prior mean","Sample mean (MLE)","Posterior mean", 
     "95% CPDR bounds"), pch=c(1,2,4,16),pt.cex=rep(1.5,4),pt.lwd=rep(2,4)) 
text(10.8,-0.075,"m", vfont=c("serif symbol","italic"), cex=1.5) 

# Repeat above with sig0=2 to obtain Figure 1.11 
# Repeat above with sig0=0.25 to obtain Figure 1.12 
# Repeat above with sig0=0.5 and sig=2 to obtain Figure 1.13 

Exercise 1.20 The normal-gamma model 

Consider the following Bayesian model: 
1( , , | ) ~ ( ,1/ )ny y iid N  

~ ( , )G   .

Find the posterior distribution of   given 1( ,..., )ny y y .  
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Note 1: In the normal-normal model, the normal mean   is unknown 
and the normal variance 2  is known. Now we consider the same 
Bayesian model but with those roles reversed, i.e. with   known and 2  
unknown. For an example of where this kind of situation might arise, see 
Byrne and Dracoulis (1985).  

Note 2: For reasons of mathematical convenience and conjugacy, we 
parameterise the normal distribution here via the precision parameter  

21/ 
rather than using 2  directly as before in the normal-normal model. 

Note 3: An equivalent formulation of the normal-gamma model being 
considered here is: 

2 2
1( , , | ) ~ ( , )ny y iid N  

2 ~ ( , )IG   , 
where this may be called the normal-inverse-gamma model. 

Solution to Exercise 1.20 

The posterior density of   is 
( | ) ( ) ( | )f y f f y  

  
2

1

1

1 1exp
21/ 1/

n
i

i

ye


  


 
 



               
  

1 /2 2

1

exp ( )
2

n
n

i
i

e y  
   



          
      

  1a be        for some a and b. 

We see that 
( | ) ~ ( , )y G a b , 

where:  
2
na  

2

2
nb s 

2 2

1

1 ( )
n

i
i

s y
n 



  .
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Note 1: The posterior mean of  , namely 

2

/ 2( | )
/ 2

a nE y
b ns







 


, 

converges to 2

1ˆ
s

  (the MLE of  ) as n →∞ .

If  0α β= =  then ˆ( | )E y    exactly for all n.  

Note 2: Unlike the posterior mean of µ  in the normal-normal model, the 
posterior mean of   cannot be expressed as a credibility estimate of the 
form  

0
ˆ(1 )c c   , 

where: 0 E 
 


    (the prior mean of  ) 

2

1ˆ
s

  (the MLE of  ).

Note 3: We may write the posterior as 
222( | ) ~ ,

2 2
nsny G 


      

. 

It can then be shown via the method of transformations that 
22 1( | ) ~ , ~ (2 )

2 2
nu y G n

 
     

, 

where 2(2 )u ns   . 

So the 1 A−  CPDR for u is  2 2
1 /2 /2(2 ), (2 )A An n      . 

So the 1 A−  CPDR for 22
u

nsµ
λ

β
=

+
 is 

2 2
1 /2 /2

2 2

(2 ) (2 ),
2 2
A An n

ns ns 

   
 


        

. 

So the 1 A−  CPDR for 2 1σ
λ

=  is 
2 2

2 2
/2 1 /2

2 2
,

(2 ) (2 )A A

ns ns
n n

  

   

         
. 

If 0α β= = , this is exactly the same as the classical 1 A−  CI for 2σ .  
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Note 4: The classical 1 A−  CI for 2σ  may be derived as follows. First 
consider all parameters fixed as constants. Then  

1 ,..., ~ (0,1)nyy iid Nµµ
σ σ

−− . 

So   
22

21 ,..., ~ (1)nyy iidµµ χ
σ σ

−−   
   
   

. 

So   
2 2

2
2

1
~ ( )

n
i

i

nsy nµµ χ
σ σ=

−  = 
 

∑ . 

So  
2

2 2
1 /2 /221 ( ) ( )A A

ns
A P n nµχ χ

σ−

 
− = < <  

 
     

2 2
2

2 2
/2 1 /2( ) ( )A A

ns ns
P

n n
µ µσ

χ χ −

 
= < <  

 
.  

Note 5: Notes 1 to 3 indicate that in the case of a priori ignorance, a 
reasonable specification is  
             0   ,  
or equivalently,  

( ) 1/ , 0f     . 

This improper prior may be thought of as the limiting case as 0  of 
the proper prior  

~ Gam( , )   ,
where  0 .  

Observe that 
/ 1E      

for all ε , and  
2/V       

as 0 . 
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Summary: For the normal-gamma model, defined by: 
1( , , | ) ~ ( ,1/ )ny y iid N  

~ ( , )G   ,
the posterior distribution of λ  is given by 

( | ) ~ ( , )y G a b , 

where:    
2
na   ,     2

2
nb s   ,      2 2

1

1 ( )
n

i
i

s y
n 



  .

The posterior mean of λ  is a/b. The posterior median is 1
( , ) (1/ 2)G a bF . 

The posterior mode of λ  is ( 1) /a b−  if a > 1; otherwise that mode is 0. 

The 1 A−  CPDR for λ  is   1 1
( , ) ( , )( / 2), (1 / 2)G a b G a bF A F A  

and may also be written as  
2 2
1 /2 /2

2 2

(2 ) (2 ),
2 2
A An n

ns ns 

   
 


        

. 

The 1 A−  CPDR for 2 1 /σ λ=  is 
2 2

2 2
/2 1 /2

2 2
,

(2 ) (2 )A A

ns ns
n n

  

   

         
. 

In the case of a priori ignorance it is appropriate to set 0α β= = .  
This defines an improper prior with density 

( ) 1/ , 0f λ λ λ∝ > , 
and a proper posterior distribution given by  

2 2( | ) ~ ( )ns y n  .

Exercise 1.21 Practice with the normal-gamma model 

In the context of the normal-gamma model, given by: 
         1( , , | ) ~ ( ,1 / )ny y iid N  

~ ( , )Gamma   ,
suppose that y = (8.4, 10.1, 9.4) ,   = 8, α  = 3 and β  = 2.  

(a) Calculate the posterior mean, mode and median of the model 
precision  . Also calculate the 95% CPDR for . Create a graph which 
shows these estimates as well as the prior density, prior mean, 
likelihood, MLE and posterior density. 
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(b) Calculate the posterior mean, mode and median of the model 
variance 2 1 /  . Also calculate the 95% CPDR for 2.  Create a 
graph which shows these estimates as well as the prior density, prior 
mean, likelihood, MLE and posterior density. 

(c) Calculate the posterior mean, mode and median of the model 
standard deviation .  Also calculate the 95% CPDR for .  Create a 
graph which shows these estimates as well as the prior density, prior 
mean, likelihood, MLE and posterior density. 

(d) Examine each of the point estimates in (a), (b) and (c) and determine 
which ones, if any, can be easily expressed in the form of a credibility 
estimate. 

Solution to Exercise 1.21 

(a) The required posterior distribution is ( | ) ~ ( , )y Gamma a b , where:  

    
2
na    = 4.5, 2

2
nb s   = 5.265, 2 2

1

1 ( )
n

i
i

s y
n 



   = 2.177.

So:  
• the posterior mean of λ  is ( | ) /E y a b   = 0.8547
• the posterior mode is ( | ) ( 1) /Mode y a b    = 0.6648
• the posterior median is the 0.5 quantile of the G(a,b) distribution

               and works out as ( | )Median y = 0.7923 
(as obtained using the qgamma() function in R; see below) 

• the 95% CPDR for   is (0.2564, 1.8065) (where the bounds are
the 0.025 and 0.975 quantiles of the G(a,b)  distribution). 

Also: 
• the prior mean is /E    = 1.5
• the prior mode is ( ) ( 1) /Mode      = 1
• the prior median is ( )Median   = 1.3370
• the MLE of λ  is 2ˆ 1 / s  = 0.4594   

(note that this estimate is biased). 

Figure 1.14 shows the various densities and estimates here, as well as the 
normalised likelihood function.  
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Note: The normalised likelihood function (with area below equal to 1) is 
the same as the posterior density of λ  if the prior is taken to be uniform 
over the positive real line, i.e. ~ (0, )Uλ ∞ . This prior is specified by 
taking   = 1 and   = 0, because then 1 1 0( ) 1f e λλ λ − −∝ ∝ . 

Figure 1.14 Results for Exercise 1.21(a) 

(b) As regards the model variance 2 1 /   we note that 2 ~ ( , )IG  
with density       

2
2( ) ( ) df f

d


 


    where ( ) 12λ σ
−

=

2 12 1 1 ( )
2 2[( ) ] ( ) )

( )
e    




  
 


22 1 / 2( ) , 0

( )
e


  

 


   


. (1.6) 

Then, by well-known properties of the inverse gamma distribution and 
maximum likelihood theory: 

• the prior mean of 2  is 2 / ( 1)E     = 1
• the prior mode is 2( ) / ( 1)Mode      = 0.5
• the prior median is 2( ) 1 / ( )Median Median   = 0.7479
• the MLE of 2  is 2 2ˆˆ 1 / s    = 2.1767  

(note that this estimate is unbiased). 
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By analogy with the prior (1.6), we find that 2( | ) ~ ( , )y IG a b  with  
density   

               
22 2 1 / 2( | ) ( ) , 0

( )

a
a bbf y e

a
     


, 

and hence that: 
 • the posterior mean of 2  is 2( | ) / ( 1)E y b a    =  1.5043 
 • the posterior mode is 2( | ) / ( 1)Mode y b a    = 0.9573 
      • the posterior median is  

2( | ) 1 / ( | )Median y Median yσ λ=  = 1.2622 
     (since 21 / 2 ( | ) (1 / | ) (1 / | )P m y P m y P m yσ λ λ= < = < = < ) 
         • the 95% CPDR for 2  is (0.5535, 3.8994)      (where the lower  
    and upper bounds are the inverses of the 0.975 and 0.025  
       quantiles of the G(a,b) distribution, respectively). 
 
Figure 1.15 shows the various densities and estimates here, as well as the 
normalised likelihood function.  
 
Note: The normalised likelihood function is the same as the posterior 
density of 2σ  if the prior on 2σ  is taken to be uniform over the positive 
real line, i.e. 2 2( ) 1, 0f σ σ∝ > . This prior is specified by ~ ( 1,0)G  , 
i.e. by 1α = −  and 0β =  as is evident from (1.6) above.  

    
  
Figure 1.15 Results for Exercise 1.21(b) 
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(c) As regards the model standard deviation 1 /  , observe that the 
prior density of this quantity is  

( ) ( ) df f
d


 


     where 2λ σ −=  

22 1
3( ) 2

( )
e   




  
 


22 1 /2 , 0

( )
e


  

 


   


.     (1.7) 

We find that:   
• the prior mean of σ  is

1
1/2 1/2

0 ( )
eE E d

α α βλβ λσ λ λ λ
α

∞ − −
− −= =

Γ∫  

1 1 1
2 2

1/2
0

( 1 / 2)
( ) ( 1 / 2)

e d
α αα βλ

α

β α β λ λ
β α α

− − −∞ −

−

Γ −
=

Γ Γ −∫   

1/2 ( 1 / 2)
( )

αβ
α

Γ −
=

Γ
= 0.9400 

• the prior mode of σ  is 2( )
2 1

Mode 






 = 0.7559 

              (obtained by setting the derivative of the logarithm of (1.7) 
               to zero, where that derivative is derived as follows:  

2( ) log ( ) (2 1) logl f         + constant 
3 22 1 2( ) 2 0

2 1

set
l  
  

 
     


) 

• the prior median of σ  is 2( ) ( )Median Median   = 0.8648

• the MLE of   is 2ˆ s   = 1.4754   (which is biased). 

By analogy with the above,   
22 1 /2( | ) , 0

( )

a
a bbf y e

a
     


. 

So we find that: 

• the posterior mean of σ  is 1/2 ( 1 / 2)( | )
( )

aE y b
a

σ Γ −
=

Γ
 = 1.1836 

• the posterior mode is 2( | )
2 1

bMode y
a

 


 = 1.0262 
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 • the posterior median is  
2( | ) ( | )Median y Median yσ σ=  = 1.1235 

                  (since 21/ 2 ( | ) ( | ))P m y P m yσ σ= < = <  
 • the 95% CPDR for   is (0.7440,1.9747)  (where these bounds  
               are the square roots of the bounds of the 95% CPDR for 2 ). 
       
Figure 1.16 shows the various densities and estimates here, as well as the 
normalised likelihood function.  
    
Note: The normalised likelihood function is the same as the posterior 
density of σ  if the prior on σ  is taken to be uniform over the positive 
real line, i.e. ( ) 1, 0f σ σ∝ > . This prior is specified by ~ ( 1 / 2,0)G  , 
i.e. by 1 / 2α = −  and 0β = , as is evident from (1.7) above.  

 
Figure 1.16 Results for Exercise 1.21(c) 

 
 
(d) Considering the various point estimates of λ , 2σ  and σ  derived 
above, we find that two of them can easily be expressed as credibility 
estimates, as follows. First, observe that  

 
2 2

2 / 2 2
( | )

1 ( / 2) 1 2 2
ns nsbE y

a n n
  


 

 
  

    
 

        2 2
2 2 2 2
n s

n n


 
       

, 

where  

 
22

2 2n





 
1

2 2n


 



 

22 2
1 2 2

E
n

 


 


  
  

. 
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We see that the posterior mean of 2  is a credibility estimate of the form 
2 2 2( | ) (1 )E y c E cs    , 

where: 
2

1
E 






 is the prior mean of 2

2 2

1

1 ( )
n

i
i

s y
n 



    is the MLE of 2

2 2
nc

n 


 
  is the credibility factor (assigned to the MLE). 

Likewise, 
2 2

2 / 2 2
( | )

1 ( / 2) 1 2 2
ns nsbMode y

a n n
  


 

 
  

    

2 2
2 2 2 2
n s

n n


 
       

,  

where 
22

2 2n





 
1

2 2n


 



  1







       22 2 ( )
2 2

Mode
n







 
 

 

21 ( )
2 2
n Mode

n



      

. 

We see that the posterior mode of 2  is a credibility estimate of the form 
2 2 2( | ) (1 ) ( )Mode y d Mode ds    , 

where: 
2( )

1
Mode 







 is the prior mode of 2

2 2

1

1 ( )
n

i
i

s y
n 



    is the MLE of 2

(i.e. mode of the likelihood function) 

2 2
nd

n 


 
  is the credibility factor (assigned to the MLE). 
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R Code for Exercise 1.21 

# (a) Inference on lambda ----------------------------------------------- 

y = c(8.4, 10.1, 9.4); n = length(y); mu=8;  alp=3; bet=2; options(digits=4) 
a=alp+n/2; sigmu2=mean((y-mu)^2); b=bet+(n/2)*sigmu2 

c(a,sigmu2,b) # 4.500 2.177 5.265 

lampriormean=alp/bet; lamlikemode=1/sigmu2; lampriormode=(alp-1)/bet 
lampriormedian= qgamma(0.5,alp,bet) 
lampostmean=a/b; lampostmode=(a-1)/b; lampostmedian=qgamma(0.5,a,b) 
lamcpdr=qgamma(c(0.025,0.975),a,b) 

c(lampriormean,lamlikemode,lampriormode,lampriormedian, 
lampostmode,lampostmedian, lampostmean,lamcpdr)  

  # 1.5000 0.4594 1.0000 1.3370 0.6648 0.7923 0.8547 0.2564 1.8065 

lamv=seq(0,5,0.01); prior=dgamma(lamv,alp,bet) 
post=dgamma(lamv,a,b);  like=dgamma(lamv,a-alp+1,b-bet+0) 

X11(w=8,h=4); par(mfrow=c(1,1)) 

plot(c(0,5),c(0,1.9),type="n", 
main="Inference on the model precision parameter", 
xlab="lambda",ylab="density/likelihood") 

lines(lamv,prior,lty=1,lwd=2); lines(lamv,like,lty=2,lwd=2); 
lines(lamv,post,lty=3,lwd=2) 
points(c(lampriormean,lampriormode, lampriormedian,  

lamlikemode,lampostmode,lampostmedian,lampostmean), 
rep(0,7),pch=c(1,1,1,2,4,4,4),cex=rep(1.5,7),lwd=2) 

points(lamcpdr,c(0,0),pch=rep(16,2),cex=rep(1.5,2)) 

legend(0,1.9, 
 c("Prior density","Likelihood function (normalised)","Posterior density"), 

lty=c(1,2,3),lwd=c(2,2,2)) 
legend(3,1.9,c("Prior mode, median\n & mean (left to right)", 

"MLE"), pch=c(1,2),pt.cex=rep(1.5,4),pt.lwd=rep(2,4)) 
legend(3,1,c("Posterior mode, median\n & mean (left to right)", 

"95% CPDR bounds"), pch=c(4,16),pt.cex=rep(1.5,4),pt.lwd=rep(2,4)) 
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# (b)  Inference on sigma2 = 1/lambda ------------------------------------------------- 
 
sig2priormean=bet/(alp-1); sig2likemode=sigmu2; sig2priormode=bet/(alp+1) 
sig2postmean=b/(a-1); sig2postmode=b/(a+1);  
sig2postmedian=1/lampostmedian 
sig2cpdr=1/qgamma(c(0.975,0.025),a,b); sig2priormedian= 1/lampriormedian 
 
c(sig2priormean, sig2likemode, sig2priormode, sig2priormedian, 
 sig2postmode, sig2postmedian, sig2postmean, sig2cpdr)  
   # 1.0000 2.1767 0.5000 0.7479 0.9573 1.2622 1.5043 0.5535 3.8994 
 
sig2v=seq(0.01,10,0.01); prior=dgamma(1/sig2v,alp,bet)/sig2v^2 
post=dgamma(1/sig2v,a,b)/sig2v^2;  
like=dgamma(1/sig2v,a-alp-1,b-bet+0)/sig2v^2 
 
plot(c(0,10),c(0,1.2),type="n",  
 main="Inference on the model variance parameter", 
 xlab="sigma^2 = 1/lambda",ylab="density/likelihood") 
lines(sig2v,prior,lty=1,lwd=2); lines(sig2v,like,lty=2,lwd=2) 
lines(sig2v,post,lty=3,lwd=2) 
 
points(c(sig2priormean, sig2priormode, sig2priormedian, sig2likemode, 
 sig2postmode, sig2postmedian,sig2postmean), 
 rep(0,7),pch=c(1,1,1,2,4,4,4),cex=rep(1.5,7),lwd=2) 
points(sig2cpdr,c(0,0),pch=rep(16,2),cex=rep(1.5,2)) 
 
legend(1.8,1.2, 
      c("Prior density","Likelihood function (normalised)","Posterior density"), 
 lty=c(1,2,3),lwd=c(2,2,2)) 
legend(7,1.2,c("Prior mode, median\n & mean (left to right)",  
 "MLE"), pch=c(1,2),pt.cex=rep(1.5,4),pt.lwd=rep(2,4)) 
legend(6,0.65,c("Posterior mode, median\n & mean (left to right)",  
 "95% CPDR bounds"), pch=c(4,16),pt.cex=rep(1.5,4),pt.lwd=rep(2,4)) 
 
# abline(h=max(like),lty=3)  # Checking likelihood and MLE are consistent 
# fun=function(t){  dgamma(1/t,a-alp-1,b-bet+0)/t^2  } 
# integrate(f=fun,lower=0,upper=Inf)$value    
                  # 1  Checking likelihood is normalised 
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# (c)  Inference on sigma = 1/sqrt(lambda) --------------------------------------------- 

sigpriormean=sqrt(bet)*gamma(alp-1/2)/gamma(alp);  
siglikemode=sqrt(sigmu2); sigpriormode=sqrt(2*bet/(2*alp+1)) 
sigpostmean= sqrt(b)*gamma(a-1/2)/gamma(a) 
sigpostmode= sqrt(2*b/(2*a+1)); sigpostmedian=sqrt(sig2postmedian) 
sigcpdr=sqrt(sig2cpdr); sigpriormedian= sqrt(sig2priormedian) 

c(sigpriormean, siglikemode, sigpriormode, sigpriormedian, 
sigpostmode, sigpostmedian, sigpostmean, sigcpdr)  

   # 0.9400 1.4754 0.7559 0.8648 1.0262 1.1235 1.1836 0.7440 1.9747 

sigv=seq(0.01,3,0.01); prior=dgamma(1/sigv^2,alp,bet)*2/sigv^3 
post=dgamma(1/sigv^2,a,b)*2/sigv^3;  
like=dgamma(1/sigv^2,a-alp-1/2,b-bet+0)*2/sigv^3 

plot(c(0,2.5),c(0,4.1),type="n", 
main="Inference on the model standard deviation parameter", 
xlab="sigma = 1/sqrt(lambda)",ylab="density/likelihood") 

lines(sigv,prior,lty=1,lwd=2) 
lines(sigv,like,lty=2,lwd=2) 
lines(sigv,post,lty=3,lwd=2) 
points(c(sigpriormean, sigpriormode, sigpriormedian, siglikemode, 

sigpostmode, sigpostmedian,sigpostmean), 
rep(0,7),pch=c(1,1,1,2,4,4,4),cex=rep(1.5,7),lwd=2) 

points(sigcpdr,c(0,0),pch=rep(16,2),cex=rep(1.5,2)) 

legend(0,4.1, 
 c("Prior density","Likelihood function (normalised)","Posterior density"), 

lty=c(1,2,3),lwd=c(2,2,2)) 
legend(1.7,4.1,c("Prior mode, median\n & mean (left to right)", 

"MLE"), pch=c(1,2),pt.cex=rep(1.5,4),pt.lwd=rep(2,4)) 
legend(1.7,2.3,c("Posterior mode, median\n & mean (left to right)", 

"95% CPDR bounds"), pch=c(4,16),pt.cex=rep(1.5,4),pt.lwd=rep(2,4)) 
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